Novel stereoconvergent transformation of 1,2a-disubstituted 1,2,2a,8b-tetrahydro-3H-benzo[b]cyclobuta[d]pyran-3-ones to 1,3-disubstituted 1,2,4a,9b-tetrahydrodibenzofuran-4-ols and its application to the second-generation synthesis of (\pm)-linderol A[†]

Masayuki Yamashita, Tomoki Inaba, Masaki Nagahama, Takashi Shimizu, Sachiko Kosaka, Ikuo Kawasaki and Shunsaku Ohta*

Department of Functional Molecular Chemistry, 21st COE Program, Kyoto Pharmaceutical University, Misasagi-Nakauchi 5, Yamashina, Kyoto 607-8414, Japan. E-mail: sohta@mb.kyoto-phu.ac.jp; Fax: +81-75-595-4705; Tel: +81-75-595-4703

Received 17th March 2005, Accepted 26th April 2005 First published as an Advance Article on the web 11th May 2005

1,2a-Disubstituted 1,2,2a,8b-tetrahydro-3*H*-benzo[*b*]cyclobuta[*d*]pyran-3-ones (**10**) bearing an electron-withdrawing group at the 2a-position were treated with two equivalents of dimethylsulfoxonium methylide to give *r*-1,*t*-4a,*t*-9b-1,3-disubstituted 1,2,4a,9b-tetrahydrodibenzofuran-4-ols (**11**) stereoconvergently regardless of the stereochemistry of the 1-position on the benzocyclobutapyran ring. This methodology was applied to the second-generation synthesis of (\pm) -linderol A (**12**), a melanin biosynthesis inhibitory natural product.

Introduction

Small ring size cycloalkanes such as cyclopropanes and cyclobutanes have been found as a basic structural constituent in a wide range of natural products.² In organic synthesis, their cycloalkanes also play an important role owing to their diversity of reactions,³ and their high reactivity toward ring-opening reactions is attributable to both angle and torsional strains. We have been interested in the small ring size cycloalkanes and reported several reactions including cyclopropane ringopening.⁴ One report dealt with a novel transformation of the coumarin derivatives (1) having an electron-withdrawing group at the 3-position to 2-substituted cyclopenta[*b*]benzofuran-3-ol derivatives (2) by treatment with 2.4 equivalents of dimethylsulfoxonium methylide⁵ (Scheme 1).^{4a,e}

Scheme 1 The previous transformation of 1 to 2.

A plausible reaction mechanism of 1 to 2 is shown in Scheme 2. The driving force of the reaction would be release of the ring strain from the cyclopropane intermediate (4)⁶ to the ringopened orthoquinone methide (5).

We expected that a similar ring-opening reaction as 1 to 2 would also occur in the strained cyclobutane derivatives (8) to give dibenzofuran derivatives (9) (Scheme 3).

In continuation of our study related to small ring size cycloalkanes, we would like to describe here a novel stereoconvergent transformation of the cyclobutane compounds, 1,2a-disubstituted benzo[*b*]cyclobuta[*d*]pyran-3-one derivatives (**10**), by treatment with dimethylsulfoxonium methylide to 1,3disubstituted dibenzofuran-4-ol derivatives (**11**) (Scheme 4), and its application to the second-generation synthesis of (\pm) -linderol A (**12**) (Fig. 1).⁷⁻⁹

† See ref. 1

Scheme 3 A working hypothesis.

Results and discussion

Stereoconvergent transformation reaction of 10 to 11

The photochemical [2 + 2] cycloaddition of alkenes has been a well-known methodology for the preparation of cyclobutane compounds¹⁰ and there are several reports on the photocycloaddition between coumarin derivatives and alkenes.¹¹ A solution of 3-ethoxycarbonylcoumarin and six equivalents of styrene in benzene was irradiated with a high-pressure mercury lamp (400 W) to afford [2 + 2] adducts (**10a**) in 78% yield.^{11e} The

DOI: 10.1039/b503890a

OBC www.rsc.org/obc

Scheme 4 The stereoconvergent transformation of 10 to 11.

(-)-Linderol A (12)

Fig. 1 Structure of natural (-)-linderol A (12).

obtained 10a was a diastereomeric mixture of 1-exo-phenyl cyclobutane (exo-10a) and 1-endo-phenyl cyclobutane (endo-10a) in the ratio of 3 : 2 on the basis of the ¹H NMR spectrum. The mixture 10a was treated with one equivalent of dimethylsulfoxonium methylide in DMF at room temperature, and this reaction condition was almost the same as that of 3 to 2 in Scheme 1.4a Though the starting material (10a) disappeared completely, the expected dibenzofuran (11a) was not found at all in the reaction mixture. When the cyclobutane (10a) was treated with 1.5 equivalents of dimethylsulfoxonium methylide, the desired product (11a) was obtained as a single isomer, which had the molecular formula $C_{21}H_{20}O_4$ on the basis of HRMS (336.1354) and elemental analysis (EA). Its plane structure and stereostructure were confirmed as shown in Scheme 5 on the basis of ¹H NMR and NOE correlations, namely, the NOEs were observed between 4a-H and 9b-H, and 9b-H and 1-phenyl-H (Scheme 5). Finally, the plane structure and the stereochemistry of 11a were determined by X-ray crystallographic analysis.¹²

Because the yield of **11a** was only 21%, several reaction conditions were examined in order to improve the yield of **11a**, and the results are shown in Table 1. The best yield was obtained by the use of two equivalents of dimethylsulfoxonium methylide in DMF (Table 1, run 3); however, more than three equivalents

Scheme 5 The stereoconvergent transformation of 10a and X-ray structure of 11a.

of dimethylsulfoxonium methylide rather decreased the yield of **11a** (runs 4–5). In THF, dichloromethane, and other polar aprotic solvents such as N,N-dimethylacetamide (DMA), 1,3dimethyl-2-imidazolidinone (DMI), and DMSO, the yields of **11a** were lower than that obtained in DMF (runs 6–10). When chloroform, DME, toluene, and methanol were used as solvents, **11a** was not afforded at all.

It is very interesting that, in spite of the use of the exo-endo mixture (3:2) of 10a, the sole product (11a) was obtained in 75% yield (run 3). This phenomenon means that the same product (11a) might be derived from both diastereomeric isomers (exo-10a and endo-10a) regardless of the stereochemistry of the 1position. Both diastereomeric isomers (exo-10a and endo-10a) were separated with flash column chromatography,13 and their stereochemistries were confirmed on the basis of spectral data and X-ray crystallography.¹⁴ As the phenyl group at the 1position of endo-10a strongly shields the C8-proton as shown in Scheme 6, the ¹H NMR signal of the C₈-H in endo-10a was observed at higher field (6.45 ppm, d) than that (6.99 ppm, dd) of exo-10a. Exo-10a and endo-10a were each treated with two equivalents of dimethylsulfoxonium methylide to give the same product (11a) in 81 and 77% yields, respectively (Scheme 6). It is noteworthy that the present transformation proceeded stereoconvergently irrespective of the stereochemistry of the 1position in 10a.

In order to examine the generality of the present stereoconvergent transformation reaction, several cyclobutane compounds (10b–10n) were prepared as diastereomeric mixtures in various ratios by the photochemical cycloaddition of monosubstituted

Run	$CH_2=S(O)Me_2$ (eq)	Solvent	Reaction time/h	ne/h Isolated yield of 11a (%)	
1	1.0	DMF	8	0	
2	1.5	DMF	8	21 ^b	
3	2.0	DMF	8	75 ^c	
4	3.0	DMF	8	52	
5	5.0	DMF	8	42	
6	2.0	DMA	83	52	
7	2.0	DMI	36	50	
8	2.0	DMSO	168	48	
9	2.0	THE	36	38	
10	2.0	CH ₂ Cl ₂	36	21	

Table 1 Effects of solvents and amounts of CH₂=S(O)Me₂ for 11a^a

^{*a*} The reaction was carried out at rt under an N_2 atmosphere. ^{*b*} The yield was 14% when the reaction temperature was 60 °C. ^{*c*} The yield was 76% when the reaction time was 24 h.

Scheme 6 The stereoconvergent transformation and X-ray structures of exo- and endo-10a.

alkenes with coumarins or β -naphthocoumarins, which had an electron-withdrawing group at the 3-position (Table 2). The diastereomeric mixtures of the cyclobutane compounds (10b-10n) were subjected to the above-mentioned reaction conditions (run 3 in Table 1), and the results are listed in Table 2. It was found that all reactions proceeded stereoconvergently to give the dibenzofuran derivatives (11b-11k) and benzo[b]naphtho[1,2d]furan derivatives (11m-11n) as single isomers. The yields of 11b-11n were 21 to 93%, and in the cases of 10 having an aliphatic acyl group at the 2a-position, the yields were relatively low except for 11j (runs 8-11). On the other hand, benzonaphthofuran derivatives (11m and 11n) were obtained in relatively high yields (runs 12-13).

Elucidation of the reaction mechanism

Next, our attention was focused on elucidation of the reaction mechanism. When cyclobutanes (exo-10p and exo-10q)¹⁵ with a pivaloyl group at the 2a-position were treated with two or more equivalents of dimethylsulfoxonium methylide, the desired dibenzofurans (11p and 11q) were not obtained at all, and the ylides (13a and 13b) were isolated in 97% yield each (Scheme 7).

These structures were confirmed on the basis of EA and their spectral data. The ylides 13a and 13b would be the key intermediates in the present transformation to 11. In the presence of a bulky pivaloyl group in 13, subsequent cyclobutane ring-opening would not proceed because the appropriate conformation for obtaining the best stereoelectronic effect in the ring-opening could not be taken.

From the consideration of these results, we assumed that the first equivalent of dimethylsulfoxonium methylide would be used for opening of the lactone ring to give the ylide (13), and the second equivalent of dimethylsulfoxonium methylide would act as a base for extraction of the phenolic proton from 13, and the generated phenoxide ion would advance the cyclobutane ring-opening. When one equivalent of sodium hydride instead of the second equivalent of dimethylsulfoxonium methylide was added after treatment of 10a with one equivalent of dimethylsulfoxonium methylide, the benzofuran (11a) was obtained in 49% yield as was expected (Scheme 8).

Scheme 8 The reaction of 10a with one equivalent of $CH_2 = S(O)Me_2$ and subsequent one equivalent of NaH.

Next, a reaction of 10a with di(methyl- d_3)sulfoxonium methylide- d_2 [CD₂=S(O)(CD₃)₂]¹⁶ was performed. When the cyclobutane (10a) was treated with two equivalents of $CD_2 = S(O)(CD_3)_2$ instead of dimethylsulfoxonium methylide, 4a-D-dibenzofuran (11a-d) was obtained in 73% chemical yield and 88% deuteration ratio¹⁷ (Scheme 9).

From these experimental results, we presumed a plausible reaction mechanism as follows (Scheme 10). (1) Due to good leaving ability of the phenoxide ion, the carbonyl group at the 3-position of 10 would be more reactive than that at the 2aposition against dimethylsulfoxonium methylide; therefore, one equivalent of dimethylsulfoxonium methylide would attack the lactone carbonyl group to open the lactone ring of exo-10 and endo-10. (2) The generated phenoxide ion (15 and 15') would extract the a-proton of the dimethylsulfoxonium methylene moiety to give the ylide (13 and 13'). (3) Another one equivalent of dimethylsulfoxonium methylide as a base would pull out the phenolic proton of 13 and 13' to reproduce the phenoxide ion and then cyclobutane ring-opening would occur to form an orthoquinone methide (16 and 16'). (4) Owing to equatorial-like orientation of the orthoquinone methide group, intramolecular 1,4-addition of dimethylsulfoxonium ylide to the orthoquinone

Table 2 The stereoconvergent transformation of 10 to 11

10			11					
	Starting material (10)						Product (11)	
Run		Exo-endo ratio ^a	W	\mathbb{R}^1	\mathbb{R}^2	R	Isolated yield (%)	
1	10a	3:2	COOEt	Н	Н	Ph	11a	75
2	10b	11:2	COOEt	Н	Н	<i>n</i> -Butyl	11b	79
3	10c	5:3	COOEt	Н	Н	2-Pyridinyl	11c	51
4	10d	10:3	COOEt	Н	Н	Acetyloxymethyl	11d ^b	74
5	10e	5:1	COPh	Н	Н	Ph	11e	62
6	10f	6:1	COPh	Н	Н	<i>n</i> -Butyl	11f	51
7	10g	7:2	COPh	Н	Н	2-Pyridinyl	11g	44
8	10h	9:2	COMe	Н	Н	Ph	11ĥ	21
9	10i	9:2	COEt	Н	Н	Ph	11i	22
10	10j	4:1	$CO n-C_3H_7$	Н	Н	Ph	11j	56
11	10k	5:1	$CO i - C_3 H_7$	Н	Н	Ph	11k	30
12	10m	19:5	COOMe			Ph	11m	86
13	10n	6:1	COPh			Ph	11n	93

^{*a*} The ratio was estimated on the basis of ¹H NMR spectrum after purification by using column chromatography. ^{*b*} The structure was confirmed by X-ray crystallography (CCDC 257345).

W = electron-withdrawing group

 $Y = S(O)Me_2$

methide portion would easily proceed in only 16 to produce a cyclohexane derivative (17). (5) The regenerated phenoxide ion would attack the α -position carbon of dimethylsulfoxonium salt (18) to give the tricyclic product (19) with an accompanying release of DMSO. (6) After work-up, the dibenzofuran (11) was obtained.

On the other hand, because of *axial*-like orientation of the orthoquinone methide group in **16**[°], the single bond A of **16**[°] rotated prior to the intramolecular 1,4-addition to give the more stable intermediate **16**. As a result, the present transformation proceeded stereoconvergently from mixtures of *exo*-**10** and *endo*-**10**.

Application to the second-generation synthesis of (\pm) -linderol A

We have already reported the first total synthesis of (\pm) -linderol A (12).⁹ (–)-Linderol A (12) was isolated from the fresh bark of *Lindera umbellata* (Lauraceae) and showed potent inhibitory activity in melanin biosynthesis of cultured B-16 melanoma cells without causing any cytotoxicity in the cultured cells or skin irritation in guinea pigs (Fig. 1).⁷ We planned an application of the present transformation reaction to the second-generation synthesis of (\pm) -12.

In the previous synthesis of (\pm) -12, it took six steps to prepare a dibenzofuran intermediate (22) having the proper stereochemistry from 5,7-dimethoxycoumarin (20), namely, the steps included transformation of 20 to 21 with dimethylsulfoxonium methylide, regio- and stereoselective introduction of the isopropyl group at the 1-position, and ring enlargement of cyclopentane to cyclohexane. Contrary to our expectation, alkaline and acidic hydrolysis of the ethoxycarbonyl group of 22 was difficult, and decarboethoxylation at the 3-position of 22 took four steps to obtain a dibenzofuranone (23) as shown in Scheme 11.

Scheme 11 The previous synthetic route from 20 to 23.

The present methodology would be applicable to improvement of the route to 22 from 20. A benzene solution of the coumarin (20) and 3-methyl-1-butene was irradiated by a highpressure mercury lamp (400 W) to give the cyclobutane derivative (24) in 94% yield as a diastereomeric mixture (exo-endo =8 : 1). The cyclobutane (24) was treated with two equivalents of dimethylsulfoxonium methylide to give the dibenzofuran derivative (22) as a single isomer in 88% yield. In order to shorten the route to 23, 3-[2-(trimethylsilyl)ethoxycarbonyl]coumarin (25) was prepared and subjected to photo [2 + 2] cycloaddition with 3-methyl-1-butene to afford the cyclobutane derivative (26) in 86% yield as a diastereomeric mixture (exo-endo = 9:1). The cyclobutane (26) was converted to the dibenzofuran derivative (27) as a single isomer in 83% yield. Finally, 27 was treated with TBAF and then refluxed to give 23 (Scheme 12). The spectral data of the obtained 22 and 23 were identical with those of 22 and 23 synthesized previously.9

a) 3-methyl-1-butene, *hv*, benzene. b) Me₃S(O)I, 60% NaH, DMF, r.t. c) 1) TBAF, THF, r.t.; 2) xylene, reflux.

Scheme 12 The present synthetic route from 20 to 22 and 23.

Therefore, the preparation of 22 was achieved in 83% overall yield in two steps from 20 and that of 23 was done in 55% overall yield in four steps from 25. As a result, the synthesis of (\pm) -12 would be much improved from the previous route.

Conclusion

We have developed a novel stereoconvergent transformation reaction to dibenzofuran derivatives (11) from benzo-[b]cyclobuta[d]pyran derivatives (10), which were prepared by the photochemical [2 + 2] cycloaddition of coumarins with an electron-withdrawing group at the 3-position and alkenes, regardless of the stereochemistry of the 1-position in 10. This methodology could be applied to the second-generation synthesis of (\pm)-linderol A (12) to shorten the synthetic route. Now, further work on an asymmetric synthesis of 12 and its derivatives by applying the present methodology is in progress.

Experimental

Melting points were measured with a Yanaco MP micromelting point apparatus and are uncorrected. NMR spectra were measured on a JEOL AL-300 (1H; 300 MHz, 13C; 75.5 MHz) and a Varian INOVA 400NB (1H; 400 MHz, 13C; 100 MHz). IR spectra were taken with a Shimadzu IR-435 spectrophotometer. A JEOL JMS-GC mate spectrometer and a Shimadzu GCMS-QP5050A spectrometer were used for low-resolution electron ionization MS (MS) and a JEOL JMS-GC mate spectrometer was used for high-resolution electron ionization MS (HRMS). Elemental analysis was performed with a PERKIN ELMER Series II CHNS/O Analyzer 2400. X-Ray crystal structure analyses were performed on a Rigaku AFC7R diffractometer. All extracts were washed with water and brine, dried over anhydrous MgSO₄, and evaporated under reduced pressure in the usual work-up procedure. Silica gel 60 (grade 7734, 60-230 mesh, Merck) for column chromatography and silica gel 60 PF_{254} (5–50 µm, Nacalai tesque) for preparative TLC were used.

Ethyl *rac*-(1*R*,2a*R*,8b*R*)-1,8b-dihydro-3-oxo-1-phenyl-2*H*benzo[*b*]cyclobuta[*d*]pyran-2a(3*H*)-carboxylate (*exo*-10a) and ethyl *rac*-(1*R*,2a*S*,8b*S*)-1,8b-dihydro-3-oxo-1-phenyl-2*H*benzo[*b*]cyclobuta[*d*]pyran-2a(3*H*)-carboxylate (*endo*-10a)

A solution of 3-ethoxycarbonylcoumarin¹⁸ (2.18 g, 10.0 mmol) and styrene (6.24 g, 6.86 ml, 60.0 mmol) in benzene (20 ml) was added in a photochemical reactor vessel with a 400 W high-pressure mercury lamp in a water-cooled quartz immersion well. The stirred solution was irradiated for 24 h. After evaporation of the volatile materials, the residue was chromatographed on

silica gel with ethyl acetate-n-hexane (1 : 3) to give a mixture of *exo*-10a and *endo*-10a (2.52 g, 78%, *exo*-*endo* = 3 : 2). *Exo*-10a and endo-10a were separated with silica gel flash column chromatography¹³ with ethyl acetate-n-hexane (1 : 10). Exo-10a (less polar isomer): colorless powder (found: C, 74.4; H, 5.7. C₂₀H₁₈O₄ requires C, 74.5; H, 5.6%), mp 90.2-90.6 °C (from AcOEt-*n*-hexane). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.21 (3H, t, J = 7.1 Hz), 2.99 (1H, ddd, J = 11.7, 8.2, 0.7 Hz), 3.26 (1H, dd, *J* = 11.7, 11. 1 Hz), 3.56 (1H, dt, *J* = 11.2, 8.9 Hz), 3.82 (1H, d, J = 9.3 Hz), 4.15 (1H, dq, J = 10.8, 7.1 Hz), 4.23 (1H, dq, J = 10.8, 7.1 Hz), 6.99 (1H, dd, J = 7.5, 1.6 Hz), 7.08 (1H, dt, J = 1.1, 7.5 Hz), 7.14 (1H, ddd, J = 8.2, 0.7, 0.4 Hz), 7.24–7.38 (6H, m). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 13.9, 35.9, 44.5, 47.8, 49.0, 62.4, 117.3, 121.1, 124.8, 126.5, 127.2, 127.5, 128.7, 129.2, 140.8, 151.5, 167.4, 168.8. v_{max}(CHCl₃)/cm⁻¹ 1751, 1730, 1637, 1584. m/z (EI) 322.1203 (M⁺, C₂₀H₁₈O₄ requires 322.1205, 1.1%), 104 (100). Crystal data. $C_{20}H_{18}O_4$, M = 322.36, orthorhombic, a = 8.471(1), b = 11.811(2), c = 16.531(3) Å, V =1653.9(9) Å³, T = 296 K, space group $Pna2_1$ (no. 33), Z = 4, μ (Cu–K α) = 7.33 cm⁻¹, 1460 reflections measured, 1283 unique $(R_{int} = 0.0)$ which were used in all calculations. The final R_1 was 0.061 (all data). Endo-10a (more polar isomer): colorless plates (found: C, 74.5; H, 5.7. C₂₀H₁₈O₄ requires C, 74.5; H, 5.6%), mp 139.8–140.2 °C (from AcOEt–*n*-hexane). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.31 (3H, t, J = 7.1 Hz), 2.98 (1H, ddd, J = 12.6, 8.2, 0.9 Hz), 3.38 (1H, ddd, J = 12.6, 8.9, 2.6 Hz), 4.13 (1H, q, J = 8.8 Hz), 4.27 (1H, dd, J = 8.8, 2.0 Hz), 4.29 (1H, dq, J = 10.6, 7.1 Hz), 4.35 (1H, dq, J = 10.8, 7.1 Hz), 6.45 (1H, d, J = 7.7 Hz), 6.81 (1H, dt, J = 1.3, 7.5 Hz), 6.88–6.91 (2H, m), 6.95 (1H, dd, J = 8.2, 1.3 Hz), 7.09–7.17 (4H, m). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 14.0, 33.1, 42.5, 45.3, 48.0, 62.5, 116.9, 117.5, 124.2, 127.0, 128.0, 128.1, 128.7, 129.6, 137.2, 151.1, 165.4, 169.9. v_{max} (CHCl₃)/cm⁻¹ 1744, 1614, 1582. *m*/*z* (EI) 322.1195 (M⁺, C₂₀H₁₈O₄ requires 322.1205, 0.8%), 104 (100). Crystal data. $C_{20}H_{18}O_4$, M = 322.36, monoclinic, a = 11.759(1), b = 9.091(2), c = 15.774(1) Å, $\beta = 103.766(6)^\circ$, V = 1637.8(3) Å³, T = 296 K, space group $P2_1/n$ (no. 14), Z = 4, μ (Cu–K α) = 7.41 cm⁻¹, 2731 reflections measured, 2539 unique ($R_{int} = 0.025$) which were used in all calculations. The final R_1 was 0.061 (all data).

General procedure for stereoconvergent transformation of 10 to 11. Ethyl *rac*-(1*R*,4a*S*,9b*R*)-1,2,4a,9b-tetrahydro-4-hydroxy-1-phenyl-3-dibenzofurancarboxylate (11a) as an example

Trimethylsulfoxonium iodide (440 mg, 2.0 mmol) was added in one portion to a suspension of NaH (60% in mineral oil, 80 mg, 2.0 mmol) in DMF (2 ml) under ice-cooling and the whole mixture was stirred for 30 min under an N2 atmosphere at room temperature. To the reaction mixture was added dropwise a solution of 10a (322 mg, 1.0 mmol, exo-endo = 3:2) in DMF (1 ml) at room temperature and the whole mixture was stirred for an additional 24 h. After acidification with 3% HCl solution under ice-cooling, the product was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over sodium sulfate, and evaporated. The residue was purified by silica gel column chromatography (eluent; AcOEtn-hexane = 1 : 5) to give **11a** (256 mg, 76%). Colorless needles (found: C, 74.9; H, 6.1. C₂₁H₂₀O₄ requires C, 75.0; H, 6.0%), mp 179.7–181.6 °C (AcOEt–*n*-hexane). $\delta_{\rm H}$ (300 MHz; CDCl₃; Me_4Si 1.28 (3H, t, J = 7.2 Hz), 2.48 (1H, dd, J = 15.2, 11.0 Hz), 2.64 (1H, td, J = 11.2, 3.9 Hz), 2.73 (1H, dd, J = 15.2, 3.9 Hz), 3.57 (1H, dd, J = 11.4, 8.1 Hz), 4.24 (2H, q, J = 7.2 Hz), 5.12(1H, d, J = 8.1 Hz), 6.15 (1H, d, J = 7.2 Hz), 6.59 (1H, t, J = 7.4 Hz), 6.88 (1H, d, J = 8.1 Hz), 7.05–7.16 (3H m), 7.23–7.37 (3H, m), 12.21 (1H, s). δ_c (75.5 MHz; CDCl₃; Me₄Si) 14.1, 30.3, 44.3, 47.1, 61.0, 79.4, 101.5, 110.0, 120.3, 125.3, 127.0, 128.3, 128.5, 128.6, 129.2, 141.9, 158.1, 164.3, 171.7. v_{max}(CHCl₃)/cm⁻¹ 3011, 1656, 1625, 1592. m/z (EI) 336.1354 (M⁺, C₂₁H₂₀O₄ requires 336.1361, 100%), 290 (35), 118 (74), 104 (51). Crystal data. $C_{21}H_{20}O_4$, M = 336.39, orthorhombic, a = 22.3809(9),

 $b = 17.2516(8), c = 9.034(1) \text{ Å}, V = 3488.1(7) \text{ Å}^3, T = 296 \text{ K},$ space group *Pbca* (no. 61), $Z = 8, \mu(\text{Cu}-\text{K}\alpha) = 7.16 \text{ cm}^{-1}, 2982$ reflections measured, 2597 unique ($R_{\text{int}} = 0.011$) which were used in all calculations. The final R_1 was 0.057 (all data).

Ethyl *rac*-(1*R*,4a*S*,9b*R*)-1-butyl-1,2,4a,9b-tetrahydro-4-hydroxy-3-dibenzofurancarboxylate (11b)

Yield, 79% (eluent; AcOEt–*n*-hexane = 1 : 5). Colorless needles (found: C, 72.0; H, 7.6. $C_{19}H_{24}O_4$ requires C, 72.1; H, 7.7%), mp 94.1–95.1 °C (from *n*-hexane). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 0.90 (3H, t, J = 7.1 Hz), 1.32 (3H, t, J = 7.1 Hz), 1.16–1.48 (5H, m), 1.63–1.73 (2H, m), 1.98 (1H, ddd, J = 16.1, 8.8, 0.7 Hz), 2.50 (1H, dd, J = 16.3, 4.0 Hz), 3.17 (1H, t, J = 8.6 Hz), 4.24 (1H, dq, J = 10.8, 7.1 Hz), 4.27 (1H, dq, J = 11.0, 7.1 Hz), 5.01 (1H, d, J = 8.1 Hz), 6.80–7.00 (2H, m), 7.13–7.19 (1H, m), 7.20–7.24 (1H, m), 12.08 (1H, s). $\delta_{\rm C}$ (75.5 MHz; CDCl₃; Me₄Si) 14.0, 14.2, 22.9, 26.1, 28.9, 31.4, 35.6, 46.3, 60.9, 79.5, 100.8, 110.3, 120.6, 125.2, 128.6, 129.6, 158.7, 164.3, 171.9. $v_{\rm max}$ (CHCl₃)/cm⁻¹ 3500–3000, 1659, 1627, 1591. *m*/*z* (EI) 316.1682 (M⁺, $C_{19}H_{24}O_4$ requires 316.1674, 100%), 270 (55), 242 (52), 213 (95), 185 (73), 118 (46).

Ethyl *rac*-(1*R*,4a*S*,9b*R*)-1,2,4a,9b-tetrahydro-4-hydroxy-1-(2pyridyl)-3-dibenzofurancarboxylate (11c)

Yield, 51% (eluent; AcOEt–*n*-hexane = 1:3). Colorless plates (found: C, 71.0; H, 5.7; N, 4.2. C₂₀H₁₉NO₄ requires C, 71.2; H, 5.7; N, 4.2%), mp 166.3–166.8 °C (from AcOEt–*n*-hexane). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.28 (3H, t, J = 7.1 Hz), 2.64 (1H, ddd, J = 16.1, 10.0, 0.8 Hz), 2.70 (1H, dd, J = 16.1, 5.3 Hz), 2.85 (1H, ddd, J = 11.2, 10.0, 5.3 Hz), 4.04 (1H, dd, J = 11.2, 8.1 Hz), 4.25 (2H, q, J = 7.1 Hz), 5.17 (1H, d, J = 8.2 Hz), 6.18 (1H, dt, J = 7.3, 0.7 Hz), 6.62 (1H, td, J = 7.5, 0.9 Hz), 6.89 (1H, td, J = 7.5, 0.9 Hz), 7dt, J = 8.1, 0.5 Hz), 6.96 (1H, dt, J = 7.7, 0.9 Hz), 7.09 (1H, tdd, J = 7.7, 1.1, 0.4 Hz), 7.22 (1H, ddd, J = 7.5, 4.9, 1.1 Hz), 7.59 (1H, td, J = 7.6, 1.8 Hz), 8.68 (1H, ddd, J = 4.9, 1.7, 0.9 Hz),12.21 (1H, s). $\delta_{\rm C} (100 \,{\rm MHz}; {\rm CDCl}_3; {\rm Me}_4{\rm Si}) 14.1, 29.0, 45.2, 45.7,$ 61.0, 79.3, 101.0, 110.1, 120.4, 122.0, 124.5, 124.7, 128.6, 129.5, 136.2, 149.5, 158.2, 161.1, 164.3, 171.7. v_{max}(CHCl₃)/cm⁻¹ 3500-3000, 1657, 1625, 1590, 1577. m/z (EI) 337.1313 (M⁺, C₂₀H₁₉NO₄ requires 337.1314, 76%), 264 (99), 219 (93), 209 (82), 173 (68), 79 (100).

Ethyl *rac*-(1*R*,4a*S*,9b*R*)-1-acetoxymethyl-1,2,4a,9b-tetrahydro-4-hydroxy-3-dibenzofurancarboxylate (11d)

Yield, 74% (eluent; AcOEt–n-hexane = 1 : 5). Colorless plates (found: C, 65.2; H, 6.1. C₁₈H₂₀O₆ requires C, 65.1; H, 6.1%), mp 120.8–121.8 °C (from AcOEt–*n*-hexane). $\delta_{\rm H}$ (300 MHz; CDCl₃; Me_4Si 1.33 (3H, t, J = 7.2 Hz), 1.88–2.08 (1H, m), 2.11 (3H, s), 2.23 (1H, dd, *J* = 16.2, 9.6 Hz), 2.53 (1H, dd, *J* = 16.3, 4.4 Hz), 3.38 (1H, dd, J = 9.7, 8.3 Hz), 4.21 (1H, dd, J = 11.4, 5.5 Hz),4.26 (1H, dd, J = 11.4, 3.9 Hz), 4.27 (2H, q, J = 7.2 Hz), 5.05 (1H, d, J = 7.9 Hz), 6.80-6.95 (2H, m), 7.15-7.22 (2H, m),12.10 (1H, s). δ_c (67.8 MHz; CDCl₃; Me₄Si) 14.3, 21.0, 24.7, 35.7, 42.5, 61.1, 64.6, 79.2, 100.4, 110.5, 121.0, 125.0, 128.3, 128.9, 158.3, 163.9, 170.8, 171.5. v_{max} (CHCl₃)/cm⁻¹ 1729, 1660, 1627, 1592. m/z (EI) 332.1262 (M⁺, C₁₈H₂₀O₆ requires 332.1260, 69%), 272 (23), 226 (100), 198 (44). Crystal data. $C_{18}H_{20}O_6$, M =332.35, triclinic, a = 9.275(1), b = 13.425(2), c = 7.830(1) Å, a =106.14(1), $\beta = 114.52(1)$, $\gamma = 71.40(1)^{\circ}$, V = 828.7(2) Å³, T =296 K, space group $P\bar{1}$ (no. 2), Z = 2, μ (Cu–K α) = 8.36 cm⁻¹, 2649 reflections measured, 2471 unique ($R_{int} = 0.038$) which were used in all calculations. The final R_1 was 0.056 (all data).

Phenyl[*rac*-(1*R*,4a*S*,9b*R*)-1,2,4a,9b-tetrahydro-4-hydroxy-1-phenyl-3-dibenzofuranyl]methanone (11e)

Yield, 62% (eluent; AcOEt–*n*-hexane = 1 : 3). Pale yellow needles (found: C, 81.4; H, 5.6. $C_{25}H_{20}O_3$ requires C, 81.5; H, 5.5%), mp 190.3–191.2 °C (from AcOEt–*n*-hexane). δ_H (400 MHz; CDCl₃;

Me₄Si) 2.62 (1H, dd, J = 15.8, 3.4 Hz), 2.58–2.66 (1H, m), 2.88 (1H, dd, J = 15.8, 12.3 Hz), 3.78 (1H, dd, J = 11.4, 8.9 Hz), 5.30 (1H, d, J = 8.9 Hz), 6.15 (1H, d, J = 7.0 Hz), 6.60 (1H, td, J = 7.5, 0.9 Hz), 6.91 (1H, dd, J = 8.1, 0.3 Hz), 7.08–7.16 (3H, m), 7.24–7.48 (6H, m), 7.55–7.58 (2H, m), 16.16 (1H, s). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 34.1, 45.9, 47.4, 80.3, 107.8, 110.0, 120.5, 125.2, 127.2, 127.9, 128.1, 128.3, 128.6, 128.7, 128.8, 131.4, 136.7, 141.7, 158.1, 178.7, 194.6. $v_{\rm max}$ (CHCl₃)/cm⁻¹ 1608. m/z (EI) 368.1409 (M⁺, C₂₅H₂₀O₃ requires 368.1412, 62%), 264 (17), 105 (100).

[*rac*-(1*R*,4a*S*,9b*R*)-1-Butyl-1,2,4a,9b-tetrahydro-4-hydroxy-3-dibenzofuranyl]phenylmethanone (11f)

Yield, 51% (eluent; AcOEt–*n*-hexane = 1 : 10). Colorless needles (found: C, 79.1; H, 7.0. $C_{23}H_{24}O_3$ requires C, 79.3; H, 6.9%), mp 130.9–132.4 °C (from AcOEt–*n*-hexane). $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 0.83 (3H, t, J = 7.0 Hz), 1.03–1.39 (5H, m), 1.58–1.74 (2H, m), 2.26 (1H, dd, J = 15.0, 8.4 Hz), 2.52 (1H, dd, J = 15.0, 3.3 Hz), 3.37 (1H, t, J = 8.6 Hz), 5.14 (1H, d, J = 8.8 Hz), 6.88–6.94 (2H, m), 7.15–7.24 (2H, m), 7.40–7.53 (3H, m), 7.53–7.58 (2H, m), 15.95 (1H, s). $\delta_{\rm C}$ (75.5 MHz; CDCl₃; Me₄Si) 13.9, 22.8, 28.8, 29.5, 31.6, 37.7, 46.4, 80.7, 107.2, 110.3, 120.8, 125.2, 128.0, 128.2, 128.7, 129.2, 131.3, 136.7, 158.8, 179.5, 193.8. $v_{\rm max}$ (CHCl₃)/cm⁻¹ 1606, 1590, 1567. *m/z* (EI) (M⁺, 348.1733, C₂₃H₂₄O₃ requires 348.1725, 27%), 105 (100), 77 (39).

[*rac*-(1*R*,4a*S*,9b*R*)-1,2,4a,9b-Tetrahydro-4-hydroxy-1-(2-pyridyl)-3-dibenzofuranyl]phenylmethanone (11g)

Yield, 44% (eluent; AcOEt–*n*-hexane = 1 : 10). Pale yellow needles (found: C, 77.8; H, 5.4; N, 3.7. $C_{24}H_{19}NO_3$ requires C, 78.0; H, 5.2; N, 3.8%), mp 187.6–188.4 °C (from AcOEt–*n*-hexane). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.58 (1H, dd, J = 15.2, 3.5 Hz), 2.81 (1H, td, J = 11.0, 3.5 Hz), 3.06 (1H, dd, J = 15.0, 11.0 Hz), 4.23 (1H, dd, J = 10.9, 9.1 Hz), 5.34 (1H, d, J = 9.0 Hz), 6.15 (1H, dt, J = 7.9, 0.7 Hz), 6.62 (1H, td, J = 7.4, 0.9 Hz), 6.86–6.93 (2H, m), 7.10 (1H, td, J = 7.6, 1.5 Hz), 7.21 (1H, ddd, J = 7.5, 4.9, 1.1 Hz), 7.37–7.49 (3H, m), 7.51–7.60 (3H, m), 8.68 (1H, ddd, J = 4.8, 1.7, 0.9 Hz), 16.12 (1H, s). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 32.6, 45.5, 47.2, 80.3, 107.4, 110.1, 120.5, 122.2, 124.5, 124.7, 128.0, 128.2, 128.7, 129.1, 131.4, 136.3, 136.7, 149.5, 158.2, 160.8, 178.7, 194.4. $v_{\rm max}$ (CHCl₃)/cm⁻¹ 3008, 1606, 1590, 1567. *m/z* (EI) 369.1371 (M⁺, $C_{24}H_{19}NO_3$ requires 369.1365, 22%), 251 (100), 209 (55), 105 (40), 77 (29).

1-[*rac*-(1*R*,4a*S*,9b*R*)-1,2,4a,9b-Tetrahydro-4-hydroxy-1-phenyl-3-dibenzofuranyl]ethanone (11h)

Yield, 21% (eluent; AcOEt–*n*-hexane = 1 : 5). Colorless prisms (found: C, 78.2; H, 6.0. $C_{20}H_{18}O_3$ requires C, 78.4; H, 5.9%), mp 183.5–184.2 °C (from AcOEt–*n*-hexane). δ_H (400 MHz; CDCl₃; Me₄Si) 2.23 (3H, s), 2.63–2.74 (3H, m), 3.62 (1H, t, *J* = 8.2 Hz), 5.15 (1H, d, *J* = 8.2 Hz), 6.16 (1H, d, *J* = 7.5 Hz), 6.61 (1H, td, *J* = 7.5, 0.9 Hz), 6.89 (1H, d, *J* = 8.1 Hz), 7.10 (1H, td, *J* = 7.7, 1.4 Hz), 7.15–7.19 (2H, m), 7.29–7.39 (3H, m), 15.22 (1H, s). δ_C (75.5 MHz; CDCl₃; Me₄Si) 26.3, 32.2, 44.7, 46.9, 79.8, 108.9, 110.1, 120.5, 125.3, 127.3, 128.2, 128.7, 128.8, 129.0, 141.7, 158.1, 170.6, 202.1. v_{max} (CHCl₃)/cm⁻¹ 1630, 1610, 1589. *m/z* (EI) 306.1250 (M⁺, C₂₀H₁₈O₃ requires 306.1256, 100%), 215 (30), 187 (29), 145 (55), 104 (56), 91 (40).

1-[*rac*-(1*R*,4a*S*,9b*R*)-1,2,4a,9b-Tetrahydro-4-hydroxy-1-phenyl-3-dibenzofuranyl)]-1-propanone (11i)

Yield, 22% (eluent; AcOEt–*n*-hexane = 1 : 10). Colorless needles (found: C, 78.5; H, 6.3. $C_{21}H_{20}O_3$ requires C, 78.7; H, 6.3%), mp 148.0–148.5 °C (from AcOEt–*n*-hexane). δ_H (400 MHz; CDCl₃; Me₄Si) 1.12 (3H, t, J = 7.2 Hz), 2.50 (1H, dq, J = 10.3, 7.3 Hz), 2.57 (1H, dq, J = 10.3, 7.3 Hz), 2.62–2.73 (3H, m), 3.61 (1H, dd, J = 10.9, 8.4 Hz), 5.15 (1H, d, J = 8.3 Hz), 6.16 (1H, dt, J = 7.4, 0.6 Hz), 6.61 (1H, td, J = 7.4, 1.0 Hz), 6.89 (1H, d, J = 8.1 Hz), 7.10 (1H, td, J = 7.7, 1.4 Hz), 7.15–7.19 (2H, m), 7.30–7.39 (3H, m), 15.20 (1H, s). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 7.8, 31.5, 31.9, 44.6, 46.8, 79.8, 108.5, 110.1, 120.4, 125.3, 127.2, 128.2, 128.6, 128.8, 129.0, 141.8, 158.1, 169.1, 205.5. $\nu_{\rm max}$ (CHCl₃)/cm⁻¹ 3010, 1634, 1609, 1587. m/z (EI) 320.1415 (M⁺, C₂₁H₂₀O₃ requires 320.1412, 100%), 229 (22), 145 (41), 104 (41), 91 (31).

1-[*rac*-(1*R*,4a*S*,9b*R*)-1,2,4a,9b-Tetrahydro-4-hydroxy-1-phenyl-3-dibenzofuranyl)-1-butanone (11j)

Yield, 56% (eluent; AcOEt–*n*-hexane = 1 : 5). Colorless needles (found: C, 78.8; H, 6.7. $C_{22}H_{22}O_3$ requires C, 79.0; H, 6.6%), mp 138.3–138.8 °C (from AcOEt–*n*-hexane). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 0.94 (3H, t, J = 7.4 Hz), 1.65 (2H, sextet, J = 7.4 Hz), 2.44 (1H, dq, J = 16.3, 7.3 Hz), 2.50 (1H, dq, J = 16.3, 7.3 Hz), 2.63–2.73 (3H, m), 3.61 (1H, dd, J = 10.9, 8.3 Hz), 5.15 (1H, d, J = 8.4 Hz), 6.16 (1H, dt, J = 7.5, 0.7 Hz), 6.60 (1H, td, J = 7.7, 1.4 Hz), 7.15–7.19 (2H, m), 7.29–7.39 (3H, m), 15.35 (1H, s). δ_c (75.5 MHz; CDCl₃; Me₄Si) 13.7, 17.3, 31.7, 40.2, 44.7, 46.8, 79.8, 108.6, 110.0, 120.4, 125.2, 127.2, 128.2, 128.6, 128.7, 129.0, 141.8, 158.0, 170.1, 204.5. v_{max} (CHCl₃)/cm⁻¹ 3005, 1628, 1586. m/z (EI) 334.1567 (M⁺, $C_{22}H_{22}O_3$ requires 334.1569, 35%), 145 (37), 104 (55), 71 (100).

1-[*rac*-(1*R*,4a*S*,9b*R*)-1,2,4a,9b-Tetrahydro-4-hydroxy-1-phenyl-3-dibenzofuranyl)-2-methyl-1-propanone (11k)

Yield, 30% (eluent; AcOEt–*n*-hexane = 1 : 1). Colorless needles (found: C, 79.0; H, 6.7. $C_{22}H_{22}O_3$: C, 79.0; H, 6.6%), mp 178.6–179.4 °C (from AcOEt–*n*-hexane). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.10 (3H, d, J = 6.6 Hz), 1.11 (3H, d, J = 6.8 Hz), 2.63–2.74 (3H, m), 2.94 (1H, hept, J = 6.8 Hz), 3.58–3.67 (1H, m), 5.17 (1H, d, J = 8.1 Hz), 6.16 (1H, dt, J = 7.4, 0.7 Hz), 6.61 (1H, td, J = 7.4, 1.0 Hz), 6.89 (1H, d, J = 8.1 Hz), 7.10 (1H, td, J = 7.8, 1.2 Hz), 7.16–7.21 (2H, m), 7.30–7.40 (3H, m), 15.64 (1H, s). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 18.5, 31.6, 34.6, 44.9, 46.9, 79.9, 107.6, 110.1, 120.4, 125.3, 127.3, 128.2, 128.6, 128.8, 129.0, 141.8, 158.1, 171.4, 208.4. $\nu_{\rm max}$ (CHCl₃)/cm⁻¹ 1622, 1586. *m/z* (EI) 334.1567 (M⁺, $C_{22}H_{22}O_3$ requires 334.1569, 80%), 291(100), 145 (26), 104 (33), 91(29), 71 (21).

Methyl *rac-*(7a*R*,11*S*,11a*S*)-7a,10,11,11a-tetrahydro-8hydroxy-11-phenylbenzo[*b*]naphtho[1,2-*d*]furan-9-carboxylate (11m)

Yield, 86% (eluent; AcOEt–*n*-hexane = 1 : 10). Colorless plates (found: C, 77.4; H, 5.6. $C_{24}H_{20}O_4$ requires C, 77.4; H, 5.4%), mp 191.5–193.0 °C (from AcOEt). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.74–2.88 (3H, m), 3.80 (1H, dd, J = 10.9, 7.2 Hz), 3.81 (3H, s), 5.19 (1H, d, J = 7.5 Hz), 6.28 (1H, dd, J = 8.5, 0.8 Hz), 6.80 (1H, ddd, J = 8.2, 6.8, 1.3 Hz), 6.94–7.00 (2H, m), 7.06 (1H, ddd, J = 8.1, 6.8, 1.1 Hz), 7.12 (1H, dd, J = 8.3, 1.4 Hz), 7.14 (1H, d, J = 7.5 Hz), 7.20 (1H, tt, J = 7.2, 1.4 Hz), 7.21 (1H, d, J = 8.8 Hz), 7.66 (1H, t, J = 8.1 Hz), 12.10 (1H, s). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 29.3, 44.4, 48.3, 52.0, 80.8, 101.6, 112.2, 121.8, 122.5, 123.1, 125.6, 127.0, 128.1, 128.3, 128.6, 129.3, 130.0, 130.9, 142.5, 156.2, 163.9, 172.0. $\nu_{\rm max}$ (CHCl₃)/cm⁻¹ 3082, 1662, 1622, 1590. *m*/*z* (EI) 372.1362 (M⁺, $C_{24}H_{20}O_4$ requires 372.1361, 100%), 340 (30), 281 (39), 168 (55).

Phenyl[*rac*-(7a*R*,11*S*,11a*S*)-7a,10,11,11a-tetrahydro-8-hydroxy-11-phenylbenzo[*b*]naphtho[1,2-*d*]furan-9-yl]methanone (11n)

Yield, 93% (eluent; AcOEt–*n*-hexane = 1 : 10). Pale yellow needles (found: C, 83.0; H, 5.3. $C_{29}H_{22}O_3$ requires C, 83.2; H, 5.3%), mp 174.5–175.5 °C (from AcOEt–*n*-hexane). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.70 (1H, dd, J = 15.1, 3.4 Hz), 2.91 (1H, td, J = 10.4, 3.3 Hz), 3.07 (1H, dd, J = 15.1, 10.7 Hz), 4.01 (1H, dd, J = 10.1, 8.0 Hz), 5.35 (1H, d, J = 7.9 Hz), 6.43 (1H, dd, J = 7.7 Hz), 6.87 (1H, ddd, J = 8.5, 6.8, 1.2 Hz), 6.94–7.00 (2H, m), 7.06–7.24 (4H, m), 7.37–7.47 (3H, m), 7.52–7.57 (2H, m),

7.65–7.71 (2H, m), 16.05 (1H, s). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 32.3, 45.3, 48.3, 81.9, 108.0, 112.1, 121.2, 122.6, 122.8, 125.8, 127.1, 127.7, 128.0, 128.1, 128.26, 128.29, 128.7, 129.4, 130.1, 130.8, 131.3, 136.9, 142.4, 156.2, 177.3, 195.3. $\nu_{\rm max}$ (CHCl₃)/cm⁻¹ 1616, 1594. *m*/*z* (EI) 418.1564 (M⁺, C₂₉H₂₂O₃ requires 418.1569, 9%), 300 (59), 271 (18), 105 (100), 77 (61).

Dimethylsulfoxonium 2-[*rac*-(1*R*,2*R*,3*R*)-1-(2,2-dimethyl-1-oxoprop-1-yl)-2-(2-hydroxyphenyl)-3-phenylcyclobut-1-yl]-2-oxoethylide (13a)

Yield, 97% (eluent; AcOEt). Colorless powder (found: C, 70.4; H, 7.1. $C_{25}H_{30}O_4S$ requires C, 70.2; H, 7.2%), mp 182.5–187.1 °C (from AcOEt–*n*-hexane). $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.28 (9H, s), 2.31 (1H, dd, J = 10.4, 8.8 Hz), 2.67 (3H, s), 3.14 (3H, s), 3.38 (1H, dd, J = 10.7, 8.5 Hz), 3.89 (1H, s), 4.14 (1H, d, J = 10.8 Hz), 4.19 (1H, dt, J = 10.8, 8.7 Hz), 6.78 (1H, td, J = 7.5, 1.3 Hz), 6.90 (1H, dd, J = 8.1, 1.3 Hz), 7.10–7.22 (5H, m), 7.24–7.29 (2H, m), 9.51 (1H, s). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 28.7, 32.3, 35.3, 41.2, 41.3, 44.9, 47.8, 67.3, 70.8, 116.5, 119.0, 124.0, 126.3, 126.4, 127.7, 128.4, 128.5, 143.0, 155.7, 179.9, 221.9. $v_{\rm max}$ (CHCl₃)/cm⁻¹ 3210, 1658, 1576, 1550. *m*/*z* (EI) 426.1862 (M⁺, C₂₅H₃₀O₄S: requires 426.1865, 1.4%), 348 (6), 291 (14), 231 (30), 153 (51), 104 (100).

Dimethylsulfoxonium 2-[*rac*-(1*R*,2*R*,3*R*)-3-butyl-1-(2,2-dimethyl-1-oxoprop-1-yl)-2-(2-hydroxyphenyl)cyclobut-1-yl]-2-oxoethylide (13b)

Yield, 97% (eluent; AcOEt). Colorless needles (found: C, 67. 7; H, 8.2. $C_{23}H_{34}O_4S$ requires C, 67.9; H, 8.4%), mp 182.3–183.9 °C (from AcOEt–*n*-hexane). δ_H (400 MHz; CDCl₃; Me₄Si) 0.84 (3H, t, *J* = 7.1 Hz), 1.13–1.50 (6H, m), 1.24 (9H, s), 1.81 (1H, dd, *J* = 10.6, 8.8 Hz), 2.65 (3H, s), 2.82–2.96 (1H, m), 3.01 (1H, dd, *J* = 10.4, 8.8 Hz), 3.07 (3H, s), 3.60 (1H, d, *J* = 10.1 Hz), 3.82 (1H, s), 6.77 (1H, td, *J* = 7.4, 1.0 Hz), 6.87 (1H, dd, *J* = 7.9, 1.1 Hz), 7.07–7.12 (2H, m), 9.41 (1H, s). δ_C (100 MHz; CDCl₃; Me₄Si) 13.9, 22.7, 28.7, 29.1, 31.5, 31.6, 35.8, 41.1, 41.3, 44.8, 47.6, 67.6, 70.3, 116.3, 118.8, 124.6, 127.5, 128.1, 155.8, 180.4, 222.2. v_{max} (CHCl₃)/cm⁻¹ 3205, 1656, 1578, 1549. *m/z* (EI) 406.2184 (M⁺, C₂₃H₃₄O₄S requires 406.2178, 10%), 328 (19), 271 (74), 231 (53), 153 (100), 119 (56).

Ethyl *rac*-(1*R*,2a*S*,8b*S*)- and *rac*-(1*R*,2a*R*,8b*R*)-1,8b-dihydro-1-(1-methylethyl)-6,8-dimethoxy-3-oxo-2*H*benzo[*b*]cyclobuta[*d*]pyran-2a(3*H*)-carboxylate (24)

Cyclobutane (24) was prepared from 20 (1.39 g, 5.0 mmol) with 3-methyl-1-butene (8.8 g, 126 mmol) in benzene (50 ml) according to the procedure for 10a. After evaporation of the volatile materials, the residue was chromatographed on silica gel with ethyl acetate-*n*-hexane (1:3) to give a mixture of *exo*-24 and endo-24 (1.6 g, 94%, exo-endo = 8 : 1). Colorless oil. $\delta_{\rm H}$ $(400 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ for *exo-24* 0.85 (3H, d, J = 6.4 Hz), 0.86 (3H, d, J = 6.4 Hz), 1.19 (3H, t, J = 7.1 Hz), 1.71 (1H, octet),J = 6.8 Hz), 2.05 (1H, dq, J = 10.6, 8.3 Hz), 2.55 (1H, dd, J = 11.4, 8.3 Hz), 2.61 (1H, dd, J = 11.4, 10.8 Hz), 3.67 (1H, d, J = 9.0 Hz, 3.79 (3 H, s), 3.80 (3 H, s), 4.10 (1 H, dq, J = 10.8, 7.1 Hz), 4.18 (1H, dq, J = 10.8, 7.1 Hz), 6.23 (1H, d, J = 2.2 Hz), 6.26 (1H, d, J = 2.2 Hz). $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 13.9, 18.7, 19.1, 32.3, 33.1, 40.1, 47.4, 48.2, 55.3, 55.4, 61.9, 93.9, 94.8, 103.9, 152.9, 156.9, 160.4, 168.2, 169.1. v_{max}(CHCl₃)/cm⁻¹ 1745, 1730, 1623, 1590. m/z (EI) 348.1565 (M⁺, C₁₉H₂₄O₆ requires 348.1573, 1.4%), 278 (100), 233 (40), 206 (78).

Ethyl *rac*-(1*R*,4a*R*,9b*S*)-1,2,4a,9b-tetrahydro-4-hydroxy-7,9dimethoxy-1-(1-methylethyl)-3-dibenzofurancarboxylate (22)

Dibenzofuran (22) was prepared from 24 (110 mg, 0.32 mmol) with trimethylsulfoxonium iodide (141 mg, 0.64 mmol) and NaH (60% in mineral oil, 26 mg, 0.64 mmol) in DMF (1 ml) according to the general procedure for stereoconvergent transformation.

The crude product was purified by silica gel column chromatography to give **22** (101 mg, 88%). Colorless plates (AcOEt–*n*hexane), mp 101.0–102.8 °C (lit.⁹*a* 102.0–102.9 °C from AcOEt– petroleum ether).

3-[2-(Trimethylsilyl)ethoxycarbonyl]coumarin (25)19

A solution of 3-coumarinearboxylic acid²⁰ (1.00 g, 4.00 mmol) and DMF (2 drops) in thionyl chloride (4 ml) was refluxed for 2 h and evaporated to give a crude acid chloride. 2-(Trimethylsilyl)ethanol (472 mg, 4.00 mmol) was added to a solution of the crude acid chloride, triethylamine (808 mg, 8.00 mmol) and a catalytic amount of DMAP in dichloromethane (10 ml) under ice-cooling and the whole mixture was stirred for 15 h at rt. After addition of water, the mixture was extracted with CHCl₃. The combined extracts were washed with 5% HCl, saturated NaHCO3, water, and brine, dried, and evaporated. The residue was recrystallized from benzene to give 25 (1.29 g, 92%). Colorless needles (found: C, 58.2; H, 6.3. C₁₇H₂₂O₆Si requires C, 58.3; H, 6.3%), mp 168.0-170.0 °C (from benzene). $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.06 (9H, s), 1.14 (2H, t, J = 8.5 Hz), 3.85 (3H, s), 3.90 (3H, s), 4.39 (2H, t, J = 8.6 Hz), 6.24 (1H, d, J = 2.0 Hz), 6.36 (1H, d, J =2.0 Hz), 8.76 (1H, s). $\delta_{\rm C}$ (75.5 MHz; CDCl₃) –1.6, 17.4, 56.0, 56.1, 63.7, 92.5, 94.9, 103.5, 111.8, 144.3, 157.3, 158.2, 158.3, 163.7, 166.3. v_{max} (CHCl₃)/cm⁻¹ 1749, 1692, 1613, 1600, 1561. m/z (EI) 350.1184 (M⁺, C₁₇H₂₂O₆Si requires 350.1185, 12%), 307 (100), 233 (47), 73 (55), 57 (29).

2-(Trimethylsilyl)ethyl *rac*-(1*R*,2a*S*,8b*S*)- and *rac*-(1*R*,2a*R*,8b*R*)-1,8b-dihydro-1-(1-methylethyl)-6,8-dimethoxy-3oxo-2*H*-benzo[*b*]cyclobuta[*d*]pyran-2a(3*H*)-carboxylate (26)

Cyclobutane (26) was prepared from 25 (180 g, 0.514 mmol) with 3-methyl-1-butene (983 mg, 14.0 mmol) in benzene (4 ml) according to the procedure for 10a. After evaporation of the volatile materials, the residue was chromatographed on silica gel with ethyl acetate-*n*-hexane (1:3) to give a mixture of *exo*-26 and endo-26 (187 mg, 86%, exo-endo = 9 : 1). Colorless oil. $\delta_{\rm H}$ $(300 \text{ MHz}; \text{CDCl}_3)$ for *exo*-**26** -0.04 (9H, s), 0.84 (3H, d, J = 6.6 Hz), 0.85 (3H, d, J = 6.6 Hz), 0.92 (2H, t, J = 8.5 Hz), 1.59-1.75 (1H, m), 1.98-2.12 (1H, m), 2.49-2.64 (2H, m), 3.66 (1H, d, J = 9.0 Hz), 3.78 (6H, s), 4.08–4.26 (2H, m), 6.21 (1H, d, J = 2.4 Hz), 6.24 (1H, d, J = 2.4 Hz). $\delta_{\rm C}$ (75.5 MHz; CDCl₃) for exo-26 -1.65, 17.0, 18.7, 19.2, 32.4, 33.2, 40.2, 47.5, 48.2, 55.3, 55.5, 64.5, 94.0, 94.9, 104.0, 153.0, 156.9, 160.4, 168.3, 169.3. $v_{\rm max}$ (CHCl₃)/cm⁻¹ 1749, 1724, 1624, 1598. *m*/*z* (EI) 420.1965 (M⁺, C₂₂H₃₂O₆Si requires 420.1968, 0.6%), 350 (20), 307 (100), 233 (31), 73 (60).

2-(Trimethylsilyl)ethyl *rac*-(1*R*,4a*R*,9b*S*)-1,2,4a,9btetrahydro-4-hydroxy-7,9-dimethoxy-1-(1-methylethyl)-3dibenzofurancarboxylate (27)

Dibenzofuran (27) was prepared from 26 (138 mg, 0.298 mmol) with trimethylsulfoxonium iodide (132 mg, 0.600 mmol) and NaH (60% in mineral oil, 24 mg, 0.600 mmol) in DMF (1 ml) according to the general procedure for stereoconvergent transformation. The crude product was purified by silica gel column chromatography to give 27 (119 mg, 83%). Colorless powder (found: C, 63.5; H, 7.9. C₂₃H₃₄O₆Si requires C, 63.6; H, 7.9%), mp 110.0–112.0 °C (from isopropyl ether). $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.07 (9H, s), 0.936 (3H, d, J = 7.0 Hz), 0.944 (3H, d, J = 6.8 Hz), 1.06 (2H, t, J = 8.3 Hz), 1.58–1.70 (1H, m), 1.75–1.90 (1H, m), 2.03 (1H, dd, J = 16.1, 9.1 Hz), 2.33 (1H, dd, J = 16.1, 9.1 Hz)16.1, 3.9 Hz), 3.37 (1H, dd, J = 10.0, 7.5 Hz), 3.75 (3H, s), 3.77 (3H, s), 4.31 (2H, t, J = 8.3 Hz), 4.95 (1H, d, J = 7.3 Hz), 6.04 (1H, d, J = 2.0 Hz), 6.14 (1H, d, J = 2.0 Hz), 12.04 (1H, s). $\delta_{\rm C}$ (75.5 MHz; CDCl₃) –1.5, 16.9, 17.3, 21.0, 21.8, 27.1, 42.2, 42.7, 55.1, 55.4, 63.2, 81.2, 89.2, 91.6, 101.6, 109.3, 157.3, 160.9, 161.7, 164.0, 172.2. v_{max}(CHCl₃)/cm⁻¹ 1656, 1618, 1594. m/z (EI) 434.2121 (M⁺, C₂₃H₃₄O₆Si requires 434.2124, 7%), 237 (22), 178 (30), 1543 (79), 121 (23), 73 (100).

rel-(1*R*,4a*R*,9b*S*)-2,3,4a,9b-Tetrahydro-7,9-dimethoxy-1-(1-methylethyl)-4(1*H*)-dibenzofuranone (23)

A solution of TBAF (0.37 ml, 1.0 M in THF, 0.37 mmol) was added dropwise to a solution of **27** (79 mg, 0.182 mmol) in THF (0.5 ml) under ice-cooling and the whole mixture was stirred for 1 h at rt. After addition of water, the mixture was extracted with AcOEt. The combined extracts were washed with water, and brine, dried, and evaporated. The residue was dissolved in xylene and refluxed for 5 min. After concentration, the residue was purified with preparative TLC (AcOEt–*n*-hexane = 1 : 5) to give **23** (41 mg, 77%). Colorless plates, mp 92.0–94.0 °C (from *n*-hexane, lit.,^{9a} 78.2–80.4 °C).

Acknowledgements

This research was financially supported in part by the Frontier Research Program and the 21st Century COE Program "Development of Drug Discovery Frontier Integrated from Tradition to Proteome" of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a Grant-in-Aid for the promotion of the advancement of education and research in graduate schools in subsidies for ordinary expenses of private schools from The Promotion and Mutual Aid Corporation for Private Schools of Japan.

References and notes

- 1 M. Yamashita, T. Inaba, T. Shimizu, I. Kawasaki and S. Ohta, *Synlett*, **2004**, 1897.
- Recent reviews: (a) R. E. Taylor, F. C. Engelhardt and M. J. Schmitt, *Tetrahedron*, 2003, **59**, 5623; (b) J. Pietruszka, *Chem. Rev.*, 2003, **103**, 1051; (c) L. A. Wessjohann, W. Brandt and T. Thiemann, *Chem. Rev.*, 2003, **103**, 1625; (d) W. A. Donaldson, *Tetrahedron*, 2001, **57**, 8589; (e) T. V. Hansen and Y. Stenstrom, *Org. Synth.: Theory and Appl.*, 2001, **5**, 1.
- 3 Recent reviews: (a) W. R. Dolbier, Jr. and M. A. Battiste, Chem. Rev., 2003. 103. 1071; (b) M. Fedorvński, Chem. Rev. 2003. 103. 1099; (c) L. K. Sydnes, Chem. Rev., 2003, 103, 1133; (d) H.-U. Reissig and R. Zimmer, Chem. Rev., 2003, 103, 1151; (e) J. E. Baldwin, Chem. Rev., 2003, 103, 1197; (f) A. Brandi, S. Cicchi, F. M. Cordero and A. Goti, Chem. Rev., 2003, 103, 1213; (g) M. Baird, Chem. Rev., 2003, 103, 1271; (h) M. Nakamura, H. Isobe and E. Nakamura, Chem. Rev., 2003, 103, 1295; (i) E. Lee-Ruff and G. Mladenova, Chem. Rev., 2003, 103, 1449; (j) J. C. Namyslo and D. E. Kaufmann, Chem. Rev., 2003, 103, 1485; (k) W. A. Donaldson, Tetrahedron, 2001, 57, 8589; (1) L. K. Sydnes, Eur. J. Org. Chem., 2000, 3511; (m) N. Iwasawa and K. Narasaka, Top. Curr. Chem., 2000, 207, 69; (n) A. de Meijere, S. I. Kozhushkov and A. F. Khlebnikov, Top. Curr. Chem., 2000, 207, 89; (o) A. de Meijere, S. I. Kozhushkov and L. P. Hadjiarapoglou, Top. Curr. Chem., 2000, 207, 149; (p) H. Nemoto and K. Fukumoto, Synlett, 1997, 863; (q) A. Brandi, F. M. Cordero, F. De Sarlo, A. Goti and A. Guarna, Synlett, 1993, 1.
- 4 (a) M. Yamashita, K. Okuyama, T. Kawajiri, A. Takada, Y. Inagaki, H. Nakano, M. Tomiyama, A. Ohnaka, I. Terayama, I. Kawasaki and S. Ohta, *Tetrahedron*, 2002, **58**, 1497; (b) M. Yamashita, K. Okuyama, T. Ohhara, I. Kawasaki, Y. Michihiro, K. Sakamaki, S. Ito and S. Ohta, *Chem. Pharm. Bull.*, 1999, **47**, 1439; (c) M. Yamashita, K. Okuyama, T. Ohhara, I. Kawasaki and S. Ohta, *Synlett*, 1996, 547; (d) M. Yamashita, K. Okuyama, T. Ohhara, I. Kawasaki, K. Sakai, S. Nakata, T. Kawabe, M. Kusumoto and S. Ohta, *Chem. Pharm. Bull.*, 1995, **43**, 2075; (e) M. Yamashita, K. Okuyama, I. Kawasaki and S. Ohta, *Tetrahedron Lett.*, 1995, **36**, 5603; (f) M. Yamashita, K. Okuyama, T. Ohhara, I. Kawasaki and S. Ohta, *Chem. Pharm. Bull.*, 1995, **43**, 708.
- 5 (a) J. S. Ng and C. Liu, in *Encyclopedia of Reagents for Organic Synthesis*, ed. L. A. Paquette, John Wiley & Sons, Chichester, 1995, vol. 3, p. 2159; (b) Y. G. Gololobov, A. N. Nesmeyanov, V. P. Lysenko

and I. E. Boldeskul, *Tetrahedron*, 1987, **43**, 2609; (c) E. J. Corey and M. Chaykovsky, *J. Am. Chem. Soc.*, 1965, **87**, 1353.

- 6 Several cyclopropane intermediates (3) were isolated and treated with one equivalent of dimethylsulfoxonium methylide to give 2^{4a} .
- 7 Isolation: Y. Mimaki, A. Kameyama, Y. Sashida, Y. Miyata and A. Fujii, *Chem. Pharm. Bull.*, 1995, **43**, 893.
- 8 Determination of the absolute configuration: M. Yamashita, T. Shimizu, I. Kawasaki and S. Ohta, *Tetrahedron: Asymmetry*, 2004, 15, 2315.
- 9 Total synthesis of (±)-12: (a) M. Yamashita, N. Ohta, T. Shimizu, K. Matsumoto, Y. Matsuura, I. Kawasaki, T. Tanaka, N. Maezaki and S. Ohta, J. Org. Chem., 2003, 68, 1216; (b) M. Yamashita, N. Ohta, I. Kawasaki and S. Ohta, Org. Lett., 2001, 3, 1359.
- 10 Recent reviews: (a) J.-P. Pete, in CRC Handbooks of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press LLC, Boca Raton, Fla, 2nd edn., 2004, pp. 71/1-71/14; (b) B. Grosch and T. Bach, in CRC Handbooks of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press LLC, Boca Raton, Fla, 2nd edn., 2004, pp. 61/1-61/14; (c) T. Tsuno and K. Sugiyama, in CRC Handbooks of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press LLC, Boca Raton, Fla, 2nd edn., 2004, pp. 30/1-30/185; (d) S. Ghosh, in CRC Handbooks of Organic Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press LLC, Boca Raton, Fla, 2nd edn., 2004, pp. 18/1-18/24; (e) A. I. Hashem, A. Senning and A.-S. S. Hamad, Org. Prep. Proced. Int., 1998, 30, 401; (f) T. Bach, Synthesis, 1998, 683; (g) S. A. Fleming, C. L. Bradford and J. J. Goa, Mol. Supramol. Photochem., 1997, 1, 187; (h) J. D. Winkler, C. M. Bowen and F. Liotta, Chem. Rev., 1995, 95, 2003; (i) M. T. Crimmins and T. L. Reinhold, Org. React., 1993, 44, 297; (j) M. T. Crimmins, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 5, p. 123; (k) D. Becker and N. Haddad, Org. Photochem., 1989, 10, 1; (1) D. Martin and M. Gamal, Synthesis, 1989, 145.
- 11 (a) D. Schwebel and P. Margaretha, *Helv. Chim. Acta*, 2000, **83**, 1168; (b) D. Schwebel, J. Ziegenbalg, J. Kopf and P. Margatetha, *Helv. Chim. Acta*, 1999, **82**, 177; (c) B. D. Ratiner, L. P. Lisa and T. Otsuki, *Chem. Express*, 1990, **5**, 225; (d) B. D. Ratiner and T. Otsuki, *Chem. Lett.*, 1989, 1035; (e) K.-H. Pfoertner, *Helv. Chim. Acta*, 1976, **59**, 834.
- 12 CCDC reference numbers 250653, 257344, 257345 and 257506. See http://www.rsc.org/suppdata/ob/b5/b503890a/ for crystallographic data in CIF or other electronic format.
- 13 Å FLASH 40 chromatography module (Biotage) and prepacked cartridge system [Wakogel[®] LP-40 Cartridge Column ($4 \phi \times 15 \text{ cm}$) (Wako Pure Chemical Industries, Ltd.)] were used.
- 14 CCDC 257344 for exo-10a. CCDC 257506 for endo-10a¹²
- 15 Exo-10p and exo-10q were obtained by recrystallization of their exoand endo-mixtures.
- 16 (a) E. Bunuel, S. D. Bull, S. G. Davies, A. C. Garner, E. D. Savory, A. D. Smith, R. J. Vickers and D. J. Watkin, Org. Biomol. Chem., 2003, 1, 2531; (b) W. H. Midura, J. A. Krysiak, M. W. Wieczorek, W. R. Majzner and M. Mikolajczyk, Chem. Commun., 1998, 1109; (c) M. J. Ackland, J. F. Gordon, J. R. Hanson and A. H. Ratcliffe, J. Chem. Soc., Perkin Trans. 1, 1988, 2009; (d) G. Doria, C. Romeo, A. Forgione, P. Sberze, M. Tibolla, M. L. Corno and G. Cadelli, Eur. J. Med. Chem., 1981, 16, 367; (e) M. A. G. El-Fayoumy, H. M. Bell, M. A. Ogliaruso and B. H. Arison, J. Org. Chem., 1979, 44, 3057.
- 17 In the ¹H NMR spectrum in **11a**-*d*, the signal at 5.13 ppm was diminished but the deuteration ratio was somewhat low. Hydrogen–deuterium exchange would occur at some stage because of acylated ylide or β -carbonyl sulfoxonium salt.
- 18 E. C. Horning, H. G. Horning and D. A. Dimmig, *Organic Synthesis*, Wiley, New York, 1965, collect. vol. III, p. 165.
- 19 H. Gerlach, Helv. Chim. Acta, 1977, 60, 3039.
- 20 (a) F. Fringuelli, O. Piermatti and F. Pizzo, Synthesis, 2003, 2331; (b) A. Song, X. Wang and K. S. Lam, Tetrahedron Lett., 2003, 44, 1755; (c) M. A. Hassan, S. A. Shiba, N. S. Harb, M. K. Abou-El-Regal and S. A. El-Metwally, Synth. Commun., 2002, 32, 679; (d) L. Bonsignore, F. Cottiglia, S. M. Lavagna, G. Loy and D. Secci, Heterocycles, 1999, 50, 469; (e) B. T. Watson and G. E. Christiansen, Tetrahedron Lett., 1998, 39, 6087; (f) L. Bonsignore, F. Cottiglia, A. M. Maccioni, D. Secci and S. M. Lavagna, J. Heterocycl. Chem., 1995, 32, 573.